Joel S. Miller - IVS Webinar

Joel S. Miller - IVS Webinar

 

"Big Topics from Top Scientists”

 

 

IVS Webinar Series
March 17, 2021 15:00 (Israel time)

Organic-based Magnets: New Materials for the 21st Century

Joel S. Miller
Distinguished Professor
 Department of Chemistry
 Adjunct Professor of Materials Science and Engineering
 Adjunct Professor of Physics and Astronomy
University of Utah
Salt Lake City, UT 84112-0850 USA

Abstract

Organic-based Magnets: New Materials for the 21st Century

 

Organic-based materials exhibiting the technologically important property of bulk magnetism have been pioneered in our laboratory and studied in collaboration with many research groups worldwide.  These magnets are prepared via conventional organic synthetic chemistry methodologies, but unlike classical inorganic-based magnets do not require high-temperature metallurgical processing.  Furthermore, these magnets are frequently soluble in conventional organic solvents and have saturation magnetizations more than twice that of iron metal on a mole basis, as well as in some cases coercive fields exceeding that of all commercial magnets (e.g., Co5Sm).  Also several magnets with critical temperatures (Tc) exceeding room temperature have been prepared.  In addition to an overview of magnetic behavior, numerous examples of structurally characterized magnets made from molecules will be presented. Four examples magnetically order above room temperature and as high at 127 oC.  These will include [MIII(C5Me5)2][A], [MnIII(porphyrin)][A] (A = cyanocarbon etc. electron acceptors) as well as M[TCNE]x (TCNE = tetracyanoethylene), which for M = V is a room temperature magnet that can be fabricated as a thin film magnet via Chemical Vapor Deposition (CVD) techniques.  A newer class of magnets of [Ru2(O2CR)4]3[M(CN)6] (M = Cr, Fe; R = Me, t-Bu) composition will also discussed.  For R = Me an interpenetrating, cubic (3-D) lattice forms and the magnet exhibits anomalous hysteresis, saturation magnetization, out-of-phase, c"(T), AC susceptibility, and zero field cooled-field cooled temperature-dependent magnetization data.  This is in contrast to R = t-Bu, which forms a layered (2-D) lattice.  Additionally, new magnets possessing the nominal Prussian blue composition, M'[M(CN)6]x and (Cation)yM'[M(CN)6], but not their structure, will be described.  This forms a series of cation-adaptive structures with [NEt4]2Mn3(CN)8, [NEt4]Mn3(CN)7, [NMeEt3]2Mn5(CN)12 and [NMe4]3Mn5(CN)13 stoichiometries that order as antiferromagnets or ferrimagnets.   Finally, Li[TCNE]  magnetically orders as a weak ferromagnet (= canted antiferromagnet).  Magnonic applications of the V[TCNE]x (x ~ 2) room temperature magnet will be discussed.

​​

 

Webinar Video